Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice.
نویسندگان
چکیده
TRPV5 is a Ca(2+)-selective channel involved in transcellular Ca(2+) absorption expressed in kidney and in the ruffled border of osteoclasts. Studies in hypercalciuric TRPV5 knockout (TRPV5(-/-)) mice, which display significantly increased vitamin D levels, showed that TRPV5 ablation increases number and size of osteoclasts but impairs osteoclast-mediated bone resorption. The latter is not in line with the observed decreased bone thickness in TRPV5(-/-) mice. Bisphosphonates also inhibit osteoclast-mediated bone resorption. The aim of this study was to evaluate the effect of alendronate on the expression of the Ca(2+) transporters in bone, kidney, and duodenum and, importantly, the bone phenotype in TRPV5(-/-) mice. Wildtype (TRPV5(+/+)) and TRPV5(-/-) mice were treated during 10 wk with 2 mg/kg alendronate or vehicle weekly and housed in metabolic cages at the end of treatment. Urine and blood samples were taken for biochemical analysis, and duodenum, kidney, and femur were sampled. Expression of Ca(2+) transporters and osteoclast ruffled border transporters in bone and cultured osteoclasts was determined by QPCR analysis. Femurs were scanned using muCT, and resorption pit assays were performed in bone marrow cultures isolated from TRPV5(+/+) and TRPV5(-/-) mice. Alendronate treatment enhanced bone thickness in TRPV5(+/+) mice but also normalized the disturbed bone morphometry parameters in TRPV5(-/-) mice. Bone TRPV5 expression was specifically enhanced by alendronate, whereas the expression of Ca(2+) transporters in kidney and intestine was not altered. The expression of the osteoclast ruffled border membrane proteins chloride channel 7 (CLC-7) and the vacuolar H(+)-ATPase did not differ between both genotypes, but alendronate significantly enhanced the expression and PTH levels in TRPV5(-/-) mice. The expression of TRPV5, CLC-7, and H(+)-ATPase in osteoclast cultures was not affected by alendronate. The number of resorption pits was reduced in TRPV5(-/-) bone marrow cultures, but the response to vitamin D was similar to that in TRPV5(+/+) cultures. The alendronate-induced upregulation of TRPV5 in bone together with the decreased resorptive capacity of TRPV5(-/-) osteoclasts in vitro suggests that TRPV5 has an important role in osteoclast function. However, our data indicate that significant bone resorption still occurs in TRPV5(-/-) mice, because alendronate treatment normalized bone thickness in these mice. Thus, TRPV5(-/-) mice are able to rescue the resulting defect in osteoclast-mediated bone resorption, possibly mediated by the long-term hypervitaminosis D or other (non)hormonal compensatory mechanisms.
منابع مشابه
The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption.
Bone remodeling involves the interplay of bone resorption and formation and is accurately controlled to maintain bone mass. Both processes require transcellular Ca(2+) transport, but the molecular mechanisms engaged remain largely elusive. The epithelial Ca(2+) channel TRPV5 is one of the most Ca(2+)-selective transient receptor potential (TRP) channels. In this study, the functional role of TR...
متن کاملThe vitamin D analog ZK191784 normalizes decreased bone matrix mineralization in mice lacking the calcium channel TRPV5.
Mice lacking the renal epithelial Ca(2+) channel TRPV5 (TRPV5(-/-)) display impaired renal Ca(2+) reabsorption, hypercalciuria, and intestinal Ca(2+) hyperabsorption, due to secondary hypervitaminosis D. Using these mice, we previously demonstrated that ZK191784 acts as an intestine-specific 1,25(OH)(2) D(3) antagonist without affecting serum calcium levels. On the other hand, it acted as an ag...
متن کاملLifelong challenge of calcium homeostasis in male mice lacking TRPV5 leads to changes in bone and calcium metabolism
Trpv5 plays an important role in calcium (Ca2+) homeostasis, among others by mediating renal calcium reabsorption. Accordingly, Trpv5 deficiency strongly stresses Ca2+ homeostasis in order to maintain stable serum Ca2+. We addressed the impact of lifelong challenge of calcium homeostasis on the bone phenotype of these mice.Aging significantly increased serum 1,25(OH)2D3 and PTH levels in both g...
متن کاملRenal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5.
Ca2+ ions play a fundamental role in many cellular processes, and the extracellular concentration of Ca2+ is kept under strict control to allow the proper physiological functions to take place. The kidney, small intestine, and bone determine the Ca2+ flux to the extracellular Ca2+ pool in a concerted fashion. Transient receptor potential (TRP) cation channel subfamily V, members 5 and 6 (TRPV5 ...
متن کامل(alendronate Sodium) Tablets and Oral Solution
FOSAMAX® (alendronate sodium) is a bisphosphonate that acts as a specific inhibitor of osteoclastmediated bone resorption. Bisphosphonates are synthetic analogs of pyrophosphate that bind to the hydroxyapatite found in bone. Alendronate sodium is chemically described as (4-amino-1-hydroxybutylidene) bisphosphonic acid monosodium salt trihydrate. The empirical formula of alendronate sodium is C4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2008